Refine Your Search

Topic

Author

Search Results

Technical Paper

Soot Distribution in a D.I. Diesel Engine Using 2-D Laser-Induced Incandescence Imaging

1991-02-01
910224
Laser-induced incandescence (LII) has been explored as a diagnostic for qualitative two-dimensional imaging of the in-cylinder soot distribution in a diesel engine. Advantages of LII over elastic-scatter soot imaging techniques include no interfering signals from liquid fuel droplets, easy rejection of laser light scattered by in-cylinder surfaces, and the signal intensity being proportional to the soot volume fraction. LII images were obtained in a 2.3-liter, single cylinder, direct-injection diesel engine, modified for optical access. To minimize laser sheet and signal attenuation (which can affect almost any planar imaging technique applied to diesel engine combustion), a low-sooting fuel was used whose vaporization and combustion characteristics are typical of standard diesel fuels. Temporal and spatial sequences of LII images were made which show the extent of the soot distribution within the optically accessible portion the combusting spray plume.
Technical Paper

Chemical Kinetic Modeling of Combustion of Practical Hydrocarbon Fuels

1989-04-01
890990
The development of detailed chemical kinetic reaction mechanisms for analysis of autoignition and knocking of complex hydrocarbon fuels is described. The wide ranges of temperature and pressure which are encountered by end gases in automobile engine combustion chambers result in extreme demands on the reaction mechanisms intended to describe knocking conditions. The reactions and chemical species which are most important in each temperature and pressure regime are discussed, and the validation of these reaction mechanisms through comparison with idealized experimental results is described. The use of these mechanisms is illustrated through comparisons between computed results and experimental data obtained in actual knocking engines.
Technical Paper

Detailed Kinetic Modeling of Autoignition Chemistry

1987-11-01
872107
The development of detailed chemical kinetic reaction mechanisms for analysis of autoignition and knocking of hydrocarbon fuels is described. In particular, kinetic processes of concern for the oxidation of complex hydrocarbon fuel molecules are emphasized. The wide ranges of temperature and pressure which are encountered by end gases in automobile engine combustion chambers result in extreme demands on reaction mechanisms which are intended to describe knocking conditions and predict rates of combustion and ignition. The reactions and chemical species which are most important in each temperature and pressure regime are discussed, and the validation of these reaction mechanisms through comparison with idealized experimental results is described.
Technical Paper

Compression-Ignited Homogeneous Charge Combustion

1983-02-01
830264
Experimentally obtained energy release results, a semi-empirical ignition model, and an empirical energy release equation developed during this research were used to evaluate the combustion of compression-ignited homogeneous mixtures of fuel, air, and exhaust products in a CFR engine. A systematic study was carried out to evaluate the response of compression-ignited homogeneous charge (CIHC) combustion to changes in operating parameters with emphasis being placed on the phenomena involved rather than the detailed chemical kinetics. This systematic study revealed that the response of the combustion process to changes in operating parameters can be explained in terms of known chemical kinetics, and that through the proper use of temperature and species concentrations the oxidation kinetics of hydrocarbon fuels can be sufficiently controlled to allow an engine to be operated in a compression-ignited homogeneous charge combustion mode.
Technical Paper

Fuel Motion and Pollutant Formation in Stratified Charge Combustion

1979-02-01
790248
The concept of charge stratification is examined, using a numerical model for fluid mechanics and chemical kinetics. Initially homogeneous and stratified charge cases are discussed and compared, and simplified global rate expressions for the chemical reactions are compared with a detailed reaction mechanism. Results computed for the stratified models indicate that the fuel can be completely burned before it reaches the walls of the combustion chamber, effectively eliminating wall quenching as a source of unburned hydrocarbon emissions. However, volume flame quenching appears to result in unacceptably large amounts of unburned fuel in the stratified models.
X